A Branch-and-Cut Algorithm for the Double Traveling Salesman Problem with Multiple Stacks

نویسندگان

  • Manuel A. Alba Martínez
  • Jean-François Cordeau
  • Mauro Dell'Amico
  • Manuel Iori
چکیده

The double traveling salesman problem with multiple stacks is a variant of the pickup and delivery traveling salesman problem in which all pickups must be completed before any of the deliveries. In addition, items can be loaded on multiple stacks in the vehicle and each stack must obey the last-in-first-out policy. The problem consists in finding the shortest Hamiltonian cycles covering all pickup and delivery locations while ensuring the feasibility of the loading plan. We formulate the problem as two traveling salesman problems linked by infeasible path constraints. We also introduce several strengthening of these constraints which are used within a branch-and-cut algorithm. Computational results performed on instances from the literature show that the algorithm outperforms existing exact algorithms. Instances with up to 28 requests (58 nodes) have been solved to optimality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Hybrid Parallel Simulated Annealing Algorithm for Travelling Salesman Problem with Multiple Transporters

In today’s competitive transportation systems, passengers search to find traveling agencies that are able to serve them efficiently considering both traveling time and transportation costs. In this paper, we present a new model for the traveling salesman problem with multiple transporters (TSPMT). In the proposed model, which is more applicable than the traditional versions, each city has diffe...

متن کامل

A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with multiple stacks

This paper studies the pickup and delivery traveling salesman problem with multiple stacks. The vehicle contains a number of (horizontal) stacks of finite capacity for loading items from the rear of the vehicle. Each stack must satisfy the last-in-first-out constraint which states that any new item must be loaded on top of a stack and any unloaded item must be on top of its stack. A branch-and-...

متن کامل

Solving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm

The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...

متن کامل

An Effective Genetic Algorithm for Solving the Multiple Traveling Salesman Problem

The multiple traveling salesman problem (MTSP) involves scheduling m > 1 salesmen to visit a set of n > m nodes so that each node is visited exactly once. The objective is to minimize the total distance traveled by all the salesmen. The MTSP is an example of combinatorial optimization problems, and has a multiplicity of applications, mostly in the areas of routing and scheduling. In this paper,...

متن کامل

A Set Covering Approach for the Double Traveling Salesman Problem with Multiple Stacks

In the double TSP with multiple stacks, a vehicle with several stacks performs a Hamiltonian circuit to pick up some items and stores them in its stacks. It then delivers every item by performing another Hamiltonian circuit while satisfying the last-in-first-out policy of its stacks. The consistency requirement ensuring that the pickup and delivery circuits can be performed by the vehicle is th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2013